0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Study on Mechanical Model for Postpeak Shear Behavior of Rock Joints Based on Degradation Characteristics of the 3D Morphology

Author(s):
ORCID


Medium: journal article
Language(s): English
Published in: Advances in Civil Engineering, , v. 2024
Page(s): 1-18
DOI: 10.1155/2024/6632239
Abstract:

The 3D morphology of the joint surface significantly influences the shear behavior of the jointrock. Constant normal load (CNL) direct shear tests with different shear displacement were conducted to understand the shear stress changing with joint roughness and damage degree during shear. The rough joint specimens were prepared using 3D scanning and printing techniques, and shear tests with different normal stresses and shear displacements were performed. Four different parameters and the damaged area quantitatively described by the image binarization and box dimension were calculated and compared to study the roughness evolution of joint surfaces. The experimental results demonstrated that the roughness parameter and shear stress decrease and approach constant values with increasing shear displacement. A JRC degradation model was presented based on regression analyses to evaluate the JRC values of rock joints under various displacements to replace it in the JRC–JCS model. Additionally, a new postshear behavior modeling was proposed for rock joints based on surface degradation characteristics under various initial joint roughness coefficients (JRC0) and normal stress. The stress–displacement curves resulting from the proposed modified model work well in predicting the postpeak stress–displacement curve, which can prove the effectiveness of the postpeak shear behavior modeling.

Structurae cannot make the full text of this publication available at this time. The full text can be accessed through the publisher via the DOI: 10.1155/2024/6632239.
  • About this
    data sheet
  • Reference-ID
    10771591
  • Published on:
    29/04/2024
  • Last updated on:
    29/04/2024
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine