0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Study on Mechanical and Rheological Properties of Solid Waste-Based ECC

Author(s):



Medium: journal article
Language(s): English
Published in: Buildings, , n. 10, v. 12
Page(s): 1690
DOI: 10.3390/buildings12101690
Abstract:

As one of the main raw materials of engineered cementitious composite (ECC), fly ash exerts the “ball effect” and “pozzolanic effect” in concrete, which improves the working performance of concrete and enhances the strength of the concrete matrix. Polyvinyl alcohol (PVA) fiber has been widely used in the preparation of ECC, while ground fly ash can be used to enhance the performance of ECC as a kind of high-activity admixture. In this paper, the compressive strength, flexural strength and flexural toughness of ECC prepared from different types of fly ash (raw fly ash, sorted fly ash and ground fly ash) are compared, and the rheological properties of the ECC are analyzed by studying the two parameters of yield stress and plastic viscosity. The results show that the smaller the particle size of fly ash is, the more sufficient it reacts with Ca(OH)2 produced by cement hydration, and the more it can improve the compressive strength and flexural strength of the matrix. In addition, the smaller the particle size of fly ash, the higher the yield stress and plastic viscosity of ECC; therefore, the distribution of PVA fiber in ECC is more uniform, thereby improving the flexural toughness and ductility of ECC.

Copyright: © 2022 by the authors; licensee MDPI, Basel, Switzerland.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10700253
  • Published on:
    11/12/2022
  • Last updated on:
    15/02/2023
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine