Study on Epoxy Resin-Modified Asphalt Binders with Improved Low-Temperature Performance
Author(s): |
Zhiqi Luo
Tao Liu Yintan Wu Hongwei Yuan Guoping Qian Xiantao Meng Jun Cai |
---|---|
Medium: | journal article |
Language(s): | English |
Published in: | Advances in Civil Engineering, January 2021, v. 2021 |
Page(s): | 1-15 |
DOI: | 10.1155/2021/5513338 |
Abstract: |
Epoxy resin-modified asphalt binder (ERMAB) has been wildly used in the pavement of steel bridges, while the improvement on its low temperature is still a big challenge to researchers. This paper tries to improve the low-temperature performance of ERMAB by optimizing the modifier, epoxy resin. Firstly, three epoxy resins and three amine curing agents were prepared and used for the modification of asphalt binders. Secondly, the formula and prepared methods of ERMABs were optimized and determined through compatibility, viscosity growth rate, and tensile tests. Thirdly, an overall comparison on the phase structure, thermal stability, low-temperature performance, temperature and frequency dependence, and fatigue performance of prepared ERMABs and control sample were made. Results show that polyurethane-modified epoxy resin or dimer acid-modified epoxy resin, with a suitable curing agent, can significantly improve the low-temperature performance of ERMAB, and the curing time meets the construction requirements. Compared with the control sample, the two ERMABs have basically the same rheological properties at medium temperature, but slightly worse high-temperature performance and fatigue resistance. The significance of this paper lies in proposing a feasible way to improve the low-temperature performance of ERMAB. |
Copyright: | © Zhiqi Luo et al. |
License: | This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met. |
6.43 MB
- About this
data sheet - Reference-ID
10604212 - Published on:
26/04/2021 - Last updated on:
02/06/2021