A Study on Daylighting Performance of Split Louver with Simplified Parametric Control
Author(s): |
Muna Alsukkar
Mingke Hu Mohamed Gadi Yuehong Su |
---|---|
Medium: | journal article |
Language(s): | English |
Published in: | Buildings, 24 April 2022, n. 5, v. 12 |
Page(s): | 594 |
DOI: | 10.3390/buildings12050594 |
Abstract: |
A split louver consists of two sections with their slat angles to be adjusted separately for glare protection and redirection of sunlight, respectively. The upper section works in conjunction with the lower section to enhance daylight availability and uniformity throughout the year. The study aims to improve the daylighting performance of the split louver by applying a simplified parametric control, which predetermines the angle difference between adjacent slats in the upper section for a chosen solar altitude and then keeps this difference fixed during operation. The slats in the upper section can be changed parametrically using the Grasshopper to reflect daylight onto the ceiling and then illuminate the rear zone of a space. The lower section of the split louver can control the daylight in the front space area and may affect the amount of light in the back. The performance indicator in evaluating the proposed split louver design for the chosen typical days is the percentage coverage of the work plane area for the illuminance range of 150~750 lux, which was achieved up to 100% in some cases. The proposed split louver with the simplified parametric control has the potential to provide relatively consistent and distributed daylight coverage of the floor area and a glare-free environment. |
Copyright: | © 2022 by the authors; licensee MDPI, Basel, Switzerland. |
License: | This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met. |
31.99 MB
- About this
data sheet - Reference-ID
10679496 - Published on:
18/06/2022 - Last updated on:
10/11/2022