0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Study on Compaction Characteristics and Construction Control of Mixtures of Red Clay and Gravel

Author(s):




Medium: journal article
Language(s): English
Published in: Advances in Civil Engineering, , v. 2018
Page(s): 1-8
DOI: 10.1155/2018/8079379
Abstract:

Red clay cannot be used as embankment filler directly due to its water-sensitive property. Gravel is usually added into red clay to enhance its performance in engineering practice. In order to investigate the influence of mixtures of red clay and gravel on the road performance, gravitational compaction experiment of red clay and vibratory compaction experiment of mixtures of red clay and gravel were conducted, respectively. The results indicate that compaction curves of red clay have double peak; the second peak is the real maximum dry density, and its corresponding moisture content is the optimal moisture content. The dry density of mixtures of red clay and gravel is influenced by the content of gravel, vibration frequency, and vibration time. The optimal content of gravel is 30%, the best vibration frequency is 45 Hz, and the optimal vibration time is 5 minutes for the mixtures of red clay and gravel in this study. The effectiveness of optimal content of gravel and optimum vibration parameters was confirmed by a CBR test. According to the compaction experiment results and actual situation in the field, a suitable construction method of subgrade using the mixtures of red clay and gravel was put forward. The feasibility of this method was also confirmed by postconstruction deformation data of the field test embankment.

Copyright: © 2018 Biao Zeng et al.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10222393
  • Published on:
    16/11/2018
  • Last updated on:
    02/06/2021
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine