Study on Bottom Damp-Proof Method of Cave Dwelling
Author(s): |
Rong Wan
De-quan Kong Li-xin Zhang |
---|---|
Medium: | journal article |
Language(s): | English |
Published in: | Advances in Civil Engineering, 2018, v. 2018 |
Page(s): | 1-6 |
DOI: | 10.1155/2018/3096312 |
Abstract: |
The cave dwelling, as one of the most typical and traditional characteristic local housing styles in the loess area of Northwest China, has been adopted widely in many areas since ancient times. The construction of the cave dwellings supports environmental protection, makes use of innovative construction technology, and preserves historical cultural heritage. The cave dwellings have practical significance and play an important role in the current society. Although there are many natural advantages to use cave dwellings, they also pose many problems, such as high moisture, inadequate lighting, poor ventilation, insufficient strength, and so on. The most serious problem is related to moisture, which affects the comfort, security, and safety of the residents; it needs to be addressed. The authors propose to resolve this problem by developing a method of building a damp-proof course in the bottom of these cave dwellings. Meanwhile, specified experiments were carried out to validate the feasibility of this method. The results show that the method is reasonable and practical, and it can be implemented easily and conveniently in the future. This research has significant practical value; the results can improve people's living environment and increase comfort and safety of cave dwelling. |
Copyright: | © 2018 Rong Wan et al. |
License: | This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met. |
1.54 MB
- About this
data sheet - Reference-ID
10176595 - Published on:
30/11/2018 - Last updated on:
02/06/2021