• DE
  • EN
  • FR
  • International Database and Gallery of Structures


Study on Bearing Capacity of Prestressed Pipe Pile Foundation Under Horizontal Load


Medium: journal article
Language(s): English
Published in: The Open Construction and Building Technology Journal, , n. 1, v. 11
Page(s): 301-312
DOI: 10.2174/1874836801711010301

Background and Objective:

Prestressed high strength concrete pipe pile (PHC) shows brittle fracture when subjected to more than its own bearing capacity. Therefore, the non-prestressed steel bar is added to the PHC pipe pile, that is, the mixed reinforced pipe pile (PRC). The mechanical behavior of PRC group piles and PHC group piles under horizontal force is studied, and the bending moment diagram and displacement diagram of the pile body are compared so as to find the weak parts.

Material and Method:

In this paper, Φ600 pipe piles are chosen, and the PRC pipe piles are made of non prestressed steel bars of the same number as the prestressing steel bars, and the two steel bars are spaced apart. Referring to a specific project of Binhai New Area, the geological parameters are used, and the force analysis of group piles under horizontal force is carried out by using the ANSYS software.


ANSYS simulation results show that, under the horizontal loading, when the number of piles in group piles is different, the locations of maximum bending moments are different. Increasing the number of the PRC pipe pile with non prestressed reinforcement can effectively reduce the maximum bending moment of the pile body.


Under horizontal load, with the increase of pile number and the pile cap aggrandizement, the position of maximum moment of pile body is shifted from 5-8 times diameter of pile to the top of pile. When the pile number reaches a certain amount, the maximum bending moment will appear at the joint between the pile cap and the pile body. At the same time, increasing the non prestressed steel bar does not influence the bending moment, and the reinforcement of the pile cap and the pile top should be strengthened.

Copyright: © 2017 Jin Xu, Lin Ma

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
  • Published on:
  • Last updated on: