Study on Air Cabin Ventilation System by Local Structural Optimization during Tunnel Construction
Author(s): |
Shuai Yang
Rui Ren Ya-Qiong Wang |
---|---|
Medium: | journal article |
Language(s): | English |
Published in: | Buildings, 1 December 2022, n. 12, v. 12 |
Page(s): | 2235 |
DOI: | 10.3390/buildings12122235 |
Abstract: |
In tunnel construction, the difficulty of ventilation gradually increases with the increase of ventilation distance, which endangers construction safety and delays construction progress. This paper presents an air cabin ventilation system of the tunnel during construction. Theoretical calculations show that the energy consumption of this ventilation system is reduced by 20.7% compared with blowing ventilation, especially since the resistance loss along the air duct is reduced by 47.04%. A 3D numerical model validated with field test data was employed to discuss the air cabin structural parameters on the ventilation efficiency of the axial fan. The results show that the relative pressure on the fan’s end face increases when the air cabin’s length–width ratio is R = 1:2. The fan spacing S = 2–4 m can ensure the larger relative pressure of multiple fans. The significant difference in air demand between the left and right sides causes the disordered airflow. Set a middle diaphragm length of 1.5 D in the air cabin, which can effectively reduce the phenomenon. The middle diaphragm with a radian of 30°effectively reduced the local loss by 59.40%. The proposed ventilation system shortens the ventilation distance and has the advantages of low energy consumption and resistance loss. It improves the construction environment and is a valuable means of ventilation design for tunnel construction. |
Copyright: | © 2022 by the authors; licensee MDPI, Basel, Switzerland. |
License: | This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met. |
6.67 MB
- About this
data sheet - Reference-ID
10712028 - Published on:
21/03/2023 - Last updated on:
10/05/2023