• DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Study of Tunnel Damage Caused by Underground Mining Deformation: Calculation, Analysis, and Reinforcement

Author(s):


Medium: journal article
Language(s): en 
Published in: Advances in Civil Engineering, , v. 2019
Page(s): 1-18
DOI: 10.1155/2019/4865161
Abstract:

Bayueshan tunnel (BYS) is an important construction crossing over coal mine goaf. The underground mining subsidence has led the tunnel cracked seriously in three years after it was built. In order to evaluate the coal mine influence and future stability of the tunnels, probability integral method (PIM) was used to calculate the tunnel deformation. PIM is an experience function method based on random medium theory which is used widely in China. With the parameters analyzed, the tunnels' subsidence was calculated. The results show that it can interpret the tunnel damage well, and the maximum normal strain positions fit the damaged tunnel positions well. It proved that PIM can be used to evaluate the tunnel's radial deformation caused by underground coal excavation. In order to maintain tunnels to keep a long-term stability, the future deformation was calculated in case the coal excavation continues. It shows that the tunnel would be cracked again if the excavation continued. Other reasons such as the old goaf deformation and water and vehicle dynamic load are also important reasons for the tunnels' deformation. In order to keep traffic safety, it needs to reinforce the cracked foundation under the tunnel. Then, grouting injection was proposed to reduce the old goaf deformation under the tunnels. If the fracture zone under the tunnels disturbed by the dynamic traffic load, the old goaf will face a risk of sudden collapse. So, to ensure the grouting effect, the grouting depth should be deeper than the sum of traffic load influence depth and height of coal mine caved fissure zone. The grouting scope should keep all the crack rock area under the tunnel from being disturbed by the dynamic traffic load. This design can reduce the sudden collapse risk of the goaf and reduces the vehicles' load disturbance on the cracked rock. The researched technology provides an engineering guidance to tunnel subsidence calculation, stability evaluation, and maintenance in complex geological and engineering situations.

Copyright: © 2019 Peixian Li et al.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10300603
  • Published on:
    20/02/2019
  • Last updated on:
    02/06/2021