0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Study of Seismic Performance of Chinese-Style Single-Layer Suspended Ceiling System by Shaking Table Tests

Author(s): ORCID
ORCID
ORCID
Medium: journal article
Language(s): English
Published in: Advances in Civil Engineering, , v. 2021
Page(s): 1-14
DOI: 10.1155/2021/9861722
Abstract:

During some recent earthquakes, the suspended ceiling system (SCS) in buildings suffered severe damage. The seismic performance of SCS attracted more attention from researchers. In this study, full-scale shaking table tests on two Chinese-style single-layer SCSs with different boundary conditions are conducted. The seismic damage and earthquake responses, including acceleration, displacement, and strain responses, are compared. The effect of the boundary condition on the seismic performance of the SCS is studied. It is found that the seismic performance of the SCS is significantly affected by the boundary condition. Compared with the SCS with the free condition at the boundary, the damage to the SCS installed with seismic clips at the boundary is much slighter. Compared with the SCS with the free condition, the median of acceleration amplification factor (AAF), the peak displacement (PD), and maximum strain of the SCS installed with seismic clips are reduced by up to 63%, 99%, and 84%, respectively. At the end of the tests, the SCS with the free condition at the boundary completely collapsed with 68% of the panels falling, while only 15% of panels fell in the SCS installed with seismic clips. The seismic clips could avoid the falling of the grids from the peripheral support and ensure the integrity of the SCS. With the help of seismic clips installed at the boundary, the responses of the ceiling, such as acceleration, displacement, and strain, decrease significantly, and thereof, the collapse resistance capacity is improved.

Copyright: © Huanjun Jiang et al.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10630625
  • Published on:
    01/10/2021
  • Last updated on:
    17/02/2022
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine