0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Study of Mechanical Property of Rock under Uniaxial Cyclic Loading and Unloading

Author(s):



Medium: journal article
Language(s): English
Published in: Advances in Civil Engineering, , v. 2018
Page(s): 1-6
DOI: 10.1155/2018/1670180
Abstract:

Through studying the mechanics, energy, and deformation features of rock under uniaxial cyclic loading and unloading, the findings are as follows: (1) under cyclic loading and unloading, the curve of stress and strain for loading and unloading in every cycle was not superposition reciprocally but formed an acutifoliate hysteresis loop. The distribution of the hysteresis loop became denser with the cycles and moved toward the direction of strain increasing. (2) The area of the hysteresis loop indicated the inner damage degree of rock. And the hysteresis energy accumulated was stronger; the damage of rock was more serious. Furthermore, the hysteresis energy grew linearly along with load, and the hysteresis energy accumulated had a trend exponential growth with cycle continuing. (3) The elasticity modulus grew in the form of logarithm as a whole. In each cycle, elasticity modulus for unloading was greater than that for loading. When it exceeded a certain value, elasticity modulus for reloading was less than elasticity modulus for unloading. (4) The cyclic loading and unloading had a strength impact that was gradually stronger and stronger as the cycle went on the sample of rock.

Copyright: © 2018 Hongjun Guo et al.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10218436
  • Published on:
    28/11/2018
  • Last updated on:
    02/06/2021
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine