0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Study of Effect of Nano-Silica on Strength and Durability Characteristics of High Volume Fly Ash Concrete for Pavement Construction

Author(s):


Medium: journal article
Language(s): English
Published in: Civil Engineering Journal, , n. 6, v. 5
Page(s): 1341-1352
DOI: 10.28991/cej-2019-03091336
Abstract:

Increasing demands of cement concrete for construction of rigid pavements motivates for the utilization of other sustainable waste cementitious materials. High volume fly-ash concrete (HVFAC) which is composed of more than 50% fly-ash fulfils the aspiration of large volume of fly-ash which are produced world over. The disadvantage which the HVFAC has is its delayed gain of strength. Contemporary literature identifies nano-silica as the material which when added in small percentages in HVFAC has the potential to improve its strength and durability characteristics at an early age. The objective of the study is to investigate the strength and durability characteristics of HVFAC modified with addition of different percentages of nano-silica so that it can be used for construction of rigid pavements. The methodology of the study involves mix proportioning of HVFAC and introducing nano-silica powder in aqueous medium after mixing it thoroughly at 2500 rpm. Various tests related to strength and durability was carried out after 28, 56 and 90 days age of concrete. The tests related to strength namely flexural strength, compressive strength and split tensile strength tests were carried out. Durability characteristics were evaluated by permeability, sorptivity and rapid chloride penetration tests and were confirmed by density and ultrasonic pulse velocity test.  The test results show that the utilization of 2% nano-silica in HVFAC enhances the strength and durability characteristics to a level that are comparable to that of normal concrete after 28 days and thus, can be sustainably utilized for rigid pavement construction.

Copyright: © 2019 Bimal Kumar, Sanjeev Sinha, Hillol Chakravarty
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10340736
  • Published on:
    14/08/2019
  • Last updated on:
    02/06/2021
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine