0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Author(s):

Medium: journal article
Language(s): English
Published in: The Open Civil Engineering Journal, , n. 1, v. 8
Page(s): 335-343
DOI: 10.2174/1874149501408010335
Abstract:

Under severe earthquakes, eccentrically braced frames might experience large inelastic deformations, and the inelastic action is restricted primarily to the ductile links. In order to study the reasonable design method for links, seventy analyses of links are conducted to investigate the effect of different flange width-thickness ratio and length, fifty links are also designed to study the influence of stiffeners spacing, stiffeners thickness and placing on side(s), and thirty-six links are designed to consider the effect of axial loads, which are all based on the material properties of Q235 steel. The accuracy of finite element models is verified using the experimental data during cyclic loading. Numerical analysis results show that the flange width-thickness ratio of short and long links can be relaxed to 10√235/fy, and stiffeners can only be placed on one side. However, the flange width-thickness ratio of intermediate links is limited to 8√235/fy, and stiffeners should be placed on both sides due to the unstable behavior. Stiffener thickness has no significant influence on the performance of links with varying length. Unlike short links, intermediate and long links are susceptible to the axial forces. Then an optimum design method is proposed by analyzing the main influencing factors, so links can have good ductility and stiffness at high load levels.

Copyright: © 2015 Shujun Hu and Zhan Wang
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10175679
  • Published on:
    02/01/2019
  • Last updated on:
    02/06/2021
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine