0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Studies on the compatibility of different superplasticizers with alkaline activators for low calcium geopolymer binders.

Author(s):



Medium: journal article
Language(s): English
Published in: ce/papers, , n. 6, v. 6
Page(s): 484-490
DOI: 10.1002/cepa.2799
Abstract:

The cement industry is coming into focus, as the annual production of around 4 Gt of cement is responsible for the emission of 1.5 Gt of CO2 and thus for over 8 % of anthropogenic CO2 emissions. This leads to the search for alternative binders. Such binders are calcined clays, which are available worldwide but vary greatly in their chemical and mineralogical composition. In many studies, particularly low‐calcium metakaolin is used as calcined clay, which reacts to form a low‐calcium aluminosilicate binder when mixed with a calcium‐free alkaline activator. The adjustment of the properties in the fresh state, especially regarding the consistency of these binders, is almost exclusively achieved by the addition of water, since commercially available superplasticizers are usually ineffective in low calcium geopolymer systems. The objective of this study was to investigate various PCE superplasticizers (MPEG‐, IPEG‐, HPEG‐PCE) with respect to their stability in different alkaline activators (NaOH, KOH, sodium, and potassium silicate solutions). The effectiveness of superplasticizers in low calcium geopolymer binders was verified by rheological tests. Size exclusion chromatography was used to investigate if structural degradation of the superplasticizers occurs. The investigated PCE superplasticizers showed no liquefying effect in the low calcium geopolymer system. This is due to a degradation process, i.e., the hydrolysis of the PEG side chains depending on the alkalinity of the activator.

Structurae cannot make the full text of this publication available at this time. The full text can be accessed through the publisher via the DOI: 10.1002/cepa.2799.
  • About this
    data sheet
  • Reference-ID
    10750380
  • Published on:
    14/01/2024
  • Last updated on:
    14/01/2024
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine