0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Structural Pounding Effect on the Seismic Performance of a Multistorey Reinforced Concrete Frame Structure

Author(s): ORCID
ORCID
ORCID
ORCID

Medium: journal article
Language(s): English
Published in: Infrastructures, , n. 8, v. 8
Page(s): 122
DOI: 10.3390/infrastructures8080122
Abstract:

During intense ground motion excitations, the pounding between adjacent buildings may result in extensive structural damage. Despite the provision of regulations regarding the minimum separation gap required to prevent structural collisions, the majority of existing structures are poorly separated. The modern seismic design and assessment of structures are based on the definition of acceptable response levels in relation to the intensity of seismic action, which is usually determined by an acceptable probability of exceedance. From this point of view, the seismic performance of a typical eight-storey reinforced concrete (RC) frame structure is evaluated in terms of pounding. In particular, the performance is evaluated using six different separation gap distances as a fraction of the EC8 minimum distance. As the height of the adjacent structure affected the required separation distance, the examined RC structure was assumed to interact with four idealized rigid structures of one to four storeys. The typical storey height was equal between the examined structures; therefore, collision could occur at the diaphragm level. To this end, incidental dynamic analyses (IDAs) were performed, and the fragility curves for different limit states were obtained for each case. Finally, the seismic fragility was combined with the hazard data to evaluate the seismic performance probabilistically.

Copyright: © 2023 the Authors. Licensee MDPI, Basel, Switzerland.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10739782
  • Published on:
    02/09/2023
  • Last updated on:
    14/09/2023
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine