0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Structural health monitoring of wind turbine blades using acoustic microphone array

Author(s):





Medium: journal article
Language(s): English
Published in: Structural Health Monitoring, , n. 4, v. 16
Page(s): 471-485
DOI: 10.1177/1475921716676871
Abstract:

This article proposes a non-contacting measurement technique based on acoustic monitoring to detect cracks or damage within a structure by observing sound radiation using a single microphone or a beamforming array. The technique works by mounting an audio speaker inside a hollow structure, such as a wind turbine blade, and observing the sound radiated from the blade to identify damage. The primary hypothesis for this structural damage detection technique is that the structural damage (cracks, edge splits, holes, etc.) on the surface results in changes in the sound radiation characteristics of the structure. Preliminary measurements to validate the methodology were carried out on a section of a wind turbine blade containing different sized holes and cracks. An acoustic microphone array with 62 microphones was used to measure the sound radiated from the structure when an audio speaker generating random noise was placed inside a cavity emulating a wind turbine blade. A phased array beamforming technique and CLEAN-based subtraction of point spread function from a reference were employed to locate the different damage types on the test structures. The same experiment was repeated using a commercially available 48-channel acoustic ring array to compare the test results. It was shown that both the acoustic beamforming and the CLEAN-based subtraction of point spread function from reference techniques can identify the damage in the test structures with sufficiently high fidelity.

Structurae cannot make the full text of this publication available at this time. The full text can be accessed through the publisher via the DOI: 10.1177/1475921716676871.
  • About this
    data sheet
  • Reference-ID
    10562016
  • Published on:
    11/02/2021
  • Last updated on:
    19/02/2021
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine