Structural Health Monitoring of a Brazilian Concrete Bridge for Estimating Specific Dynamic Responses
Author(s): |
Enrico Zacchei
Pedro H. C. Lyra Gabriel E. Lage Epaminondas Antonine Airton B. Soares Natalia C. Caruso Cassia S. de Assis |
---|---|
Medium: | journal article |
Language(s): | English |
Published in: | Buildings, 7 June 2022, n. 6, v. 12 |
Page(s): | 785 |
DOI: | 10.3390/buildings12060785 |
Abstract: |
A 3D coupled model to simulate vehicle–bridge interactions (VBI) to estimate its structural responses and impact factors (IMs) was developed in this study. By structural health monitoring (SHM) of a real concrete bridge, several data were collected to calibrate the bridge model by the finite element method (FEM). These models provide the bridge response in terms of vertical displacements and accelerations. VBI models provide reliable outputs without significantly altering the dynamic properties of the bridge. Modified recent analytical equations, which account for the effects of the asymmetric two-axle vehicles, were developed numerically. These equations, plus some proposed solutions, also quantified the vehicle response in terms of accelerations to estimate a more conservative driving comfort. The goal consisted in fitting the SHM with numerical and analytical models to find a more appropriate response for safety purposes and maintenance. From the codes and the literature, it was shown that a unique IM factor was not found. Moreover, most approaches underestimate the phenomena; in fact, results show that a monitored IM factor is 2.5 greater than IM from codes. Proposed equations for vehicle accelerations provided more conservative values up to about three times the standard comfort value. |
Copyright: | © 2022 by the authors; licensee MDPI, Basel, Switzerland. |
License: | This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met. |
3.39 MB
- About this
data sheet - Reference-ID
10679526 - Published on:
17/06/2022 - Last updated on:
10/11/2022