Structural damage identification via physics-guided machine learning: a methodology integrating pattern recognition with finite element model updating
Author(s): |
Zhiming Zhang
Chao Sun |
---|---|
Medium: | journal article |
Language(s): | English |
Published in: | Structural Health Monitoring, April 2021, n. 4, v. 20 |
Page(s): | 147592172092748 |
DOI: | 10.1177/1475921720927488 |
Abstract: |
Structural health monitoring methods are broadly classified into two categories: data-driven methods via statistical pattern recognition and physics-based methods through finite elementmodel updating. Data-driven structural health monitoring faces the challenge of data insufficiency that renders the learned model limited in identifying damage scenarios that are not contained in the training data. Model-based methods are susceptible to modeling error due to model idealizations and simplifications that make the finite element model updating results deviate from the truth. This study attempts to combine the merits of data-driven and physics-based structural health monitoring methods via physics-guided machine learning, expecting that the damage identification performance can be improved. Physics-guided machine learning uses observed feature data with correct labels as well as the physical model output of unlabeled instances. In this study, physics-guided machine learning is realized with a physics-guided neural network. The original modal-property based features are extended with the damage identification result of finite element model updating. A physics-based loss function is designed to evaluate the discrepancy between the neural network model output and that of finite element model updating. With the guidance from the scientific knowledge contained in finite element model updating, the learned neural network model has the potential to improve the generality and scientific consistency of the damage detection results. The proposed methodology is validated by a numerical case study on a steel pedestrian bridge model and an experimental study on a three-story building model. |
- About this
data sheet - Reference-ID
10562456 - Published on:
11/02/2021 - Last updated on:
09/07/2021