0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Structural Behaviour of Fully Coupled Spar–mooring System Under Extreme Wave Loading

Author(s):




Medium: journal article
Language(s): Latvian
Published in: Journal of Civil Engineering and Management, , v. 19
Page(s): S69-S77
DOI: 10.3846/13923730.2013.801899
Abstract:

Floating spar platform has been proven to be an economical and efficient type of offshore oil and gas exploration structure in deep and ultra-deep seas. Associated nonlinearities, coupled action, damping effect and extreme sea environments may modify its structural responses. In this study, fully coupled spar–mooring system is modelled integrating mooring lines with the cylindrical spar hull. Rigid beam element simulates large cylindrical spar hull and catenary mooring lines are configured by hybrid beam elements. Nonlinear finite element analysis is performed under extreme wave loading at severe deep sea. Morison's equation has been used to calculate the wave forces. Spar responses and mooring line tensions have been evaluated. Though the maximum mooring line tensions are larger at severe sea-state, it becomes regular after one hour of wave loading. The response time histories in surge, heave, pitch and the maximum mooring tension gradually decreases even after attaining steady state. It is because of damping due to heavier and longer mooring lines in coupled spar–mooring system under deep water conditions. The relatively lesser values of response time histories in surge, heave, pitch and the maximum mooring tension under extreme wave loading shows the suitability of a spar platform for deep water harsh and uncertain environmental conditions.

Structurae cannot make the full text of this publication available at this time. The full text can be accessed through the publisher via the DOI: 10.3846/13923730.2013.801899.
  • About this
    data sheet
  • Reference-ID
    10362822
  • Published on:
    12/08/2019
  • Last updated on:
    12/08/2019
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine