0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Structural Behavior Analysis of UHPC Hybrid Tower for 3-MW Super Tall Wind Turbine Under Rated Wind Load

Author(s):




ORCID
Medium: journal article
Language(s): English
Published in: International Journal of Concrete Structures and Materials, , n. 1, v. 16
DOI: 10.1186/s40069-022-00542-8
Abstract:

Based on the conceptual design of an advanced wind turbine tower system, use of ultra-high-performance cementitious composites material with compressive strength of 200 MPa (UHPC-200) is proposed to ensure high durability and ductility of the UHPC hybrid wind turbine tower. Key design parameters are proposed for the structural design of a 3-MW wind turbine. The material properties, mixing compositions, simplified constitutive relationship, and model parameters are outlined. Using nonlinear finite element analysis, the effects of wall thickness, wall thickness ratio, and prestressing tendon on the structural performance including the longitudinal stress field, lateral displacement, stress concentration at the transition zone between the middle and bottom segments are evaluated. Based on the stress-field analysis, the design limitation of the segmental wall thickness and its ratio is recommended. The numerical results show that the tower with the wall thickness ratio of 2:3 (i.e., thickness 200–300 mm) with prestressing tendons is an optimal design for the UHPC hybrid tower. The results of this study can be used as a reference for the engineering design of a new type of UHPC hybrid wind turbine tower.

Structurae cannot make the full text of this publication available at this time. The full text can be accessed through the publisher via the DOI: 10.1186/s40069-022-00542-8.
  • About this
    data sheet
  • Reference-ID
    10746173
  • Published on:
    04/12/2023
  • Last updated on:
    04/12/2023
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine