0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Strengthening of Reinforced Concrete Beams via CFRP Orientation

Author(s): ORCID
ORCID
ORCID
Medium: journal article
Language(s): English
Published in: Buildings, , n. 1, v. 14
Page(s): 82
DOI: 10.3390/buildings14010082
Abstract:

The utilization of externally bonded carbon fiber-reinforced polymers (CFRPs) and glass fiber-reinforced polymers (GFRPs) for reinforcing and retrofitting components has garnered considerable interest recently, as such composites provide beneficial properties, including a high modulus of elasticity, high strength, and low weight. This work conducts a finite element analysis, verified through laboratory experiments on 14 reinforced concrete (RC) beams. The primary focus is the final load of these components, considering varying CFRP orientations relative to the loading direction. In this research, the performances of control beams and RC beams are compared to assess the effectiveness and efficiency of different strengthening methods. The results demonstrated that bonding CFRP sheets with V-shaped end anchorages on the tension side was highly effective in improving the flexural capacity of RC beams in the weaker concrete strength group. This strengthening method resulted in a substantial increase in strength (of around 29.8%) in the higher concrete strength group. In addition, utilizing V-shaped end anchorages to bond CFRP sheets on the tension side proved to be a highly efficient technique for improving flexural strength. Conversely, bonding inclined CFRP strips to the sides of RC beams was highly effective at enhancing the shear capacity of the beams. These outcomes convincingly demonstrate the effectiveness of FRP for the reinforcement of structural components. The specimens strengthened with inclined strips exhibited enhanced shear and deformation capacity compared to those strengthened with vertical strips.

Copyright: © 2023 by the authors; licensee MDPI, Basel, Switzerland.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10754019
  • Published on:
    14/01/2024
  • Last updated on:
    07/02/2024
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine