0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Strength Performance of Different Mortars Doped Using Olive Stones as Lightweight Aggregate

Author(s): ORCID
ORCID
ORCID
ORCID
Medium: journal article
Language(s): English
Published in: Buildings, , n. 10, v. 12
Page(s): 1668
DOI: 10.3390/buildings12101668
Abstract:

The amount of ground olive stone available in Spain surpasses the needs of the construction industry for lightweight aggregate. The objective herein is to generate a material, lightweight mortar, with different percentages of ground olive stone, and then evaluate the mechanical performance and viability of these materials for the manufacture of lightweight elements used in the construction sector. To this end, an experiment was designed with nine different dosages of ground olive stone and three types of cement. In all, 378 test pieces were produced to assess the material, its handling while fresh, and its performance. Based on an analysis of consistency, density, compressive strength, and flexural strength, we were able to determine how much ground olive stone can be successfully incorporated into the material: 30% ground olive stone achieved a decrease in density of 15% compared to mortar without ground olive stone. The compressive strength of the different dosages studied remained above 70% of that of the mortar without ground olive stone. Bending behavior was more severely compromised, the values being around 50%. Cements with a more robust strength performance proved capable of assimilating a higher percentage of ground olive stone. This study shows the technical viability of the materials produced.

Copyright: © 2022 by the authors; licensee MDPI, Basel, Switzerland.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10699895
  • Published on:
    11/12/2022
  • Last updated on:
    10/05/2023
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine