Stayed-Cable Bridge Damage Detection and Localization Based on Accelerometer Health Monitoring Measurements
Author(s): |
Mosbeh R. Kaloop
Jong Wan Hu |
---|---|
Medium: | journal article |
Language(s): | English |
Published in: | Shock and Vibration, 2015, v. 2015 |
Page(s): | 1-11 |
DOI: | 10.1155/2015/102680 |
Abstract: |
In situ damage detection and localization using real acceleration structural health monitoring technique are the main idea of this study. The statistical and model identification time series, the response spectra, and the power density of the frequency domain are used to detect the behavior of Yonghe cable-stayed bridge during the healthy and damage states. The benchmark problem is used to detect the damage localization of the bridge during its working time. The assessment of the structural health monitoring and damage analysis concluded that (1) the kurtosis statistical moment can be used as an indicator for damage especially with increasing its percentage of change as the damage should occur; (2) the percentage of change of the Kernel density probability for the model identification error estimation can detect and localize the damage; (3) the simplified spectrum of the acceleration-displacement responses and frequencies probability changes are good tools for detection and localization of the one-line bridge damage. |
Copyright: | © 2015 Mosbeh R. Kaloop, Jong Wan Hu |
License: | This creative work has been published under the Creative Commons Attribution 3.0 Unported (CC-BY 3.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met. |
2.22 MB
- About this
data sheet - Reference-ID
10676345 - Published on:
28/05/2022 - Last updated on:
01/06/2022