State-of-the-Art Review on Modal Identification and Damage Detection of Bridges by Moving Test Vehicles
Author(s): |
Y. B. Yang
Judy P. Yang |
---|---|
Medium: | journal article |
Language(s): | English |
Published in: | International Journal of Structural Stability and Dynamics, February 2018, n. 2, v. 18 |
Page(s): | 1850025 |
DOI: | 10.1142/s0219455418500256 |
Abstract: |
In 2004, Yang and co-workers proposed the extraction of bridge frequencies from the dynamic response of a moving test vehicle [Y. B. Yang, C. W. Lin and J. D. Yau, Extracting bridge frequencies from the dynamic response of a passing vehicle, J. Sound Vib. 272 (2004) 471–493] and verified the technique by a field test [C. W. Lin and Y. B. Yang, Use of a passing vehicle to scan the bridge frequencies — An experimental verification, Eng. Struct. 27(13) (2005) 1865–1878]. This technique was extended to construction of mode shapes [Y. B. Yang, Y. C. Li and K. C. Chang, Constructing the mode shapes of a bridge from a passing vehicles: A theoretical study, Smart Struct. Syst. 13(5) (2014) 797–819] and damage identification of bridges. It was referred to as the indirect method for bridge measurement because no vibration sensors are needed for installation on the bridge, but it only requires one or few vibration sensors on the test vehicle. When compared with the conventional direct method that relies fully on the response of the bridge fitted with vibration sensors, the advantage of the indirect method is clear: mobility, economy, and efficiency. Over the past years, many research studies were conducted along the lines of the indirect method for bridge measurement. Significant advances have been made on various aspects of application. This paper represents a state-of-the-art review of the related research works conducted worldwide. Comments and recommendations will be made at proper places, while concluding remarks including future research directions will be presented at the end of the paper. |
- About this
data sheet - Reference-ID
10352273 - Published on:
14/08/2019 - Last updated on:
14/08/2019