0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Stabilization Mechanism and Safety Control Strategy of the Deep Roadway with Complex Stress

Author(s):





Medium: journal article
Language(s): English
Published in: Advances in Civil Engineering, , v. 2020
Page(s): 1-18
DOI: 10.1155/2020/8829651
Abstract:

With the increase of mining intensity of coal resources, some coal mines in China have gradually entered the deep mining stage. The complexity of the stress environment of the deep rock stratum leads to the difficulty of coal mining. Among them, the control of the deep roadway is one of the bottlenecks restricting the safety mining of the deep coal resources in China. By means of statistical analysis, the factors affecting the stability of the deep roadway were summed up: roadway occurrence environment, driving disturbance, and support means. The mechanical model of the deep roadway was established with the theory of elastic-plastic mechanics, the distribution characteristics of the plastic zone of the roadway were revealed, and the influence laws of lateral pressure coefficient, vertical stress, and support strength on the stability of the roadway were analyzed. Through numerical simulation, the law of stress, displacement and the plastic zone distribution evolution of the deep roadway, the mechanism of horizontal stress, and the mechanism of bolt support on the roadway were studied. On this basis, the safety control strategies to ensure the stability of the deep roadway were put forward: improving the strength of the roof and floor, especially the bearing part of the top angle and the side angle, enhancing the stability of the two sides of the roadway and controlling the floor heave, and making the surrounding rock of the deep roadway release pressure moderately, so as to make the roadway easy to be maintained under the low stress environment. These meaningful references were provided for the exploitation of deep coal resources in China.

Copyright: © Yang Yu et al.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10433955
  • Published on:
    11/09/2020
  • Last updated on:
    02/06/2021
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine