0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

The Stability Factors’ Sensitivity Analysis of Key Rock B and Its Engineering Application of Gob-Side Entry Driving in Fully-Mechanized Caving Faces

Author(s): ORCID



Medium: journal article
Language(s): English
Published in: Advances in Civil Engineering, , v. 2021
Page(s): 1-11
DOI: 10.1155/2021/9963450
Abstract:

To reveal the critical factors of the main roof influencing stability of surrounding rocks of roadways driven along goaf in fully-mechanized top-coal caving faces, this paper builds a structural mechanics model for the surrounding rocks based on geological conditions of the 8105 fully-mechanized caving face of Yanjiahe Coal Mine, and the stress and equilibrium conditions of the key rock block B are analyzed, and focus is on analyzing rules of the key rock block B influencing stability of roadways driven along goaf. Then, the orthogonal experiment and the range method are used to confirm the sensitivity influencing factors in numerical simulation, which are the basic main roof height and the fracture location, the length of the key rock block B, and the main roof hardness in turn. It is revealed that the basic main roof height and its fracture location have a greater influence on stability of god-side entry driving. On the one hand, the coal wall and the roof of roadways driven along goaf are damaged, and the deformation of surrounding rocks of roadways and the vertical stress of narrow coal pillars tend to stabilize along with the increase of the basic main roof height. On the other hand, when the gob-side entry is located below the fracture line of the main roof, the damage caused by gob-side entry is the most serious. Therefore, on-site gob-side entry driving should avoid being below the fracture line of the main roof. At last, industrial tests are successfully conducted in the fully-mechanized top-coal caving faces, 8105 and 8215, of Yanjiahe Coal Mine.

Copyright: © Hong-Sheng Wang et al.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10609880
  • Published on:
    08/06/2021
  • Last updated on:
    17/02/2022
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine