0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Stability Analysis of Construction Factors for Partially Cable-Stayed Bridges with Multiple Towers and High Piers

Author(s):
ORCID




Medium: journal article
Language(s): English
Published in: Buildings, , n. 11, v. 14
Page(s): 3416
DOI: 10.3390/buildings14113416
Abstract:

Partially cable-stayed bridges have the characteristics of continuous rigid-frame bridges and cable-stayed bridges, making them a novel composite bridge system. This study focuses on the construction project of a multi-tower high-pier curved partially cable-stayed bridge to investigate the bridge’s stability during construction. The Midas/Civil software was used to establish a model for key construction stages of the bridge, considering structural linear elasticity and geometric nonlinearity. The study examines the impact of static wind loads, asymmetric construction of the main girder, closure sequence, and the load and detachment of the hanging basket on the bridge’s stability during construction. The results indicate that static wind loads have a significant impact on structural geometric nonlinearity, with a maximum reduction of 4.99%. Asymmetric construction at both ends of the main girder can cause structural instability and should be avoided. The geometric nonlinearity stability coefficient for the hanging basket load decreased by 10.83% during the maximum no-cable stage and by 7.84% during the cable stage, significantly affecting the stability during construction. A bridge closure sequence of side-span, secondary midspan, and midspan provides the most stable condition during the construction phase. The results of this study can inform the construction of similar partially cable-stayed bridges.

Copyright: © 2024 by the authors; licensee MDPI, Basel, Switzerland.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10804747
  • Published on:
    10/11/2024
  • Last updated on:
    10/11/2024
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine