0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

A speed measurement method for underwater robots using an artificial lateral line sensor

Author(s): ORCID



ORCID


Medium: journal article
Language(s): English
Published in: Smart Materials and Structures, , n. 1, v. 31
Page(s): 015011
DOI: 10.1088/1361-665x/ac358e
Abstract:

Underwater robot technology has made considerable progress in recent years. However, due to the harsh environment and noise in the flow field near the underwater robots, it is difficult to measure some basic parameters, including swimming speed. The traditional speed measurement methods for underwater robots have the disadvantages of being limited by the environment and bulky. In order to overcome these shortcomings, an artificial lateral line (ALL) sensor based on cantilever structure was developed in this paper. According to the deformation of cantilever beam under water impact, the swimming speed of underwater robots can be measured. In addition, an ‘end-to-end’ calibration algorithm was proposed to calibrate the ALL sensor in the noisy environment, avoiding the complicated noise modeling and filter design process. To reduce the risk of overfitting, a hybrid loss function based on physical model was adopted. Compared with the classical calibration method, our method can reduce the error by 47.8%. Our sensor achieved an average absolute error of 0.07897 m s−1, and can measure water speed up to 3 m s−1.

Structurae cannot make the full text of this publication available at this time. The full text can be accessed through the publisher via the DOI: 10.1088/1361-665x/ac358e.
  • About this
    data sheet
  • Reference-ID
    10636304
  • Published on:
    30/11/2021
  • Last updated on:
    30/11/2021
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine