0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Spatiotemporal Impact of Urbanization on Urban Heat Island and Urban Thermal Field Variance Index of Tianjin City, China

Author(s): ORCID
ORCID
ORCID



Medium: journal article
Language(s): English
Published in: Buildings, , n. 4, v. 12
Page(s): 399
DOI: 10.3390/buildings12040399
Abstract:

The rapid infrastructure development in densely populated areas has had several negative impacts. Increases in urbanization have led to increased LST, and urban ecological systems have been negatively affected. Urban heat islands (UHIs) can be mitigated by understanding how current and future LST phenomena are linked to changes in landscape composition and land use cover (LUC). This study investigated the multi-scale spatial analysis of LUC and LST in Tianjin using remote sensing and GIS data. We used Landsat data from 2005 to 2020 to examine the effects of LUC on LST in urban agglomeration. According to the Urban Thermal Field Variance Index (UTFVI), the city’s ecological evaluation was carried out. Results show that changes in LUC and other anthropogenic activities affect the spatial distribution of LST. For the study years (2004–2009), the estimated mean LST in Tianjin was 25.32 °C, 26.73 °C, 27.62 °C, and 27.93 °C. Between LST and urban areas with other infrastructures, and NDBI, significant positive correlation values were found about 0.53, 0.48, and 0.76 (p < 0.05), respectively. Temperatures would almost certainly increase by 3.87 °C to 7.26 °C as a result of decreased plant cover and increased settlements. These findings strongly imply a correlation between LST and the vegetation index. Between 2005 and 2020, the anticipated increase in LST of 3.39 °C is expected to harm urban environmental health. This study demonstrates how Tianjin and other cities can achieve ecological sustainability.

Copyright: © 2022 by the authors; licensee MDPI, Basel, Switzerland.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10664394
  • Published on:
    09/05/2022
  • Last updated on:
    01/06/2022
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine