0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

A Solution to the Time-Dependent Stress Distribution in Suborbicular Backfilled Stope Interaction with Creeping Rock

Author(s): ORCID
ORCID
ORCID
ORCID

Medium: journal article
Language(s): English
Published in: Advances in Civil Engineering, , v. 2021
Page(s): 1-18
DOI: 10.1155/2021/5533980
Abstract:

The creep behavior of deep weak rock masses is important due to an underground opening. Appreciating the nature and source of these deformations requires the knowledge of rock mass and ground support interaction. The theoretical solution of the backfill’s internal stresses needs to consider the time-dependent effect. In the present study, the coupling interaction between the creep behavior of the nearby rock material and the internal stresses in the backfilled stope is considered and the interaction characteristics are given analytically. A solution is then proposed regarding the time-dependent stress distribution in suborbicular backfilled stope interaction with creeping rock. Besides, the correctness of the theoretical solution is verified by numerical simulation, while influential parameters such as stope buried depth, lateral pressure coefficient, horizontal stress ratio, creep time of surrounding rock mass, delay time of the backfill, and Young’s modulus are thoroughly discussed. Research shows that when the stope buried depth becomes large as well as the rheological effect of the nearby rock materials becomes significant, the stress distribution in the backfill material exceeds its self-weight stress and presents significant time-dependent characteristics. The delayed backfilling weakens the backfill’s ground support effect on the nearby rock material. Hence, timely and multipoint simultaneous backfilling is needed for a stope with significant rheological deformation of surrounding rock mass. Lastly, this work will offer useful knowledge while designing the backfill materials for underground mines.

Copyright: © 2021 Baoxu Yan et al.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10602203
  • Published on:
    17/04/2021
  • Last updated on:
    02/06/2021
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine