0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Soil Deformation around a Cylindrical Cavity under Drained Conditions: Theoretical Analysis

Author(s): ORCID
ORCID
ORCID
ORCID
Medium: journal article
Language(s): English
Published in: Advances in Civil Engineering, , v. 2022
Page(s): 1-15
DOI: 10.1155/2022/4127660
Abstract:

This paper proposes analytical solutions to the soil deformation around a cylindrical cavity under drained conditions. Analytical procedures are used to predict the degree of interaction between cavities and ground surface loads based on mathematical theorems. The stresses applied at the boundary condition induce the ground motions around the cylindrical cavity wall. Additionally, the Airy stresses are obtained through mathematical derivatives and integrations by combining the Fourier analysis test with the Navier equations. Next, we established a schematic representation of the horizontal and vertical displacement related to the corrective shear model to obtain insight into the intensity and directions of ground stresses. The resulting transformations include displacement, shear, and deviatoric stresses applied to the cylindrical cavity wall. These data can be used as input parameters for numerical simulations to alternatively solve the groundmass redistribution problems and calibrate the horizontal stress of drained soil conditions.

Copyright: © 2022 Pieride Mabe Fogang et al. et al.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10687211
  • Published on:
    13/08/2022
  • Last updated on:
    10/11/2022
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine