0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Software Architecture and Non-Fungible Tokens for Digital Twin Applications in the Built Environment

Author(s): ORCID
ORCID
Medium: journal article
Language(s): English
Published in: Buildings, , n. 9, v. 12
Page(s): 1447
DOI: 10.3390/buildings12091447
Abstract:

Blockchain technology (BCT) can enable distributed collaboration, enhance data sharing, and automate back-end processes for digital twin (DT) decentralized applications (dApps) in the construction industry (CI) 4.0. The aim of this paper was to propose a software architecture and to develop a framework of smart contracts for blockchain-based digital twin (BCDT) dApps throughout the lifecycle of projects in CI 4.0. This paper leveraged the existing literature and action research interviews to identify and validate the critical industry problems, functional requirements (FRs), and non-functional requirements (NFRs) to be addressed by BCDT dApps in CI 4.0. Basic use cases were developed to design a framework of smart contracts for BCDT dApps throughout the lifecycle of projects. The analysis of an online survey was used to identify the key requirements and enablers to propose a software architecture for BCDT applications and to validate the requirements for developing the framework of a smart contract for BCDTs. The findings were: (1) The identification of key problems in CI 4.0 for each BIM/BCDT dimension (3D, 4D, 5D, 6D, 7D, 8D, and contractual (cD)) and the related FRs and NFRs for BCDT applications. Additionally, key use cases were designed to address the problems identified. (2) The proposed BCDT architecture permitted us to narrow gaps in the literature on blockchain-based decentralized digital twins. Moreover, the proposed BCDT architecture and smart-contract framework addressed the main requirements in the literature on BCDTs. (3) The study leveraged the non-fungible token (NFT) standard to develop a framework for smart contracts that addressed the key use cases and the related industry problems and functional requirements that were identified. The study also considered the contractual dimension (cD) as an overarching dimension in relation to the other BCDT dimensions. (4) We also compared the costs of several public blockchains for executing the proposed smart-contract framework throughout the lifecycle of a medium-sized building project. The cost analysis permitted the development of criteria to evaluate the suitability of blockchain networks for BCDT applications in CI 4.0 depending on the principal blockchain networks’ properties (security, decentralization, scalability, and interoperability). Finally, this study resulted in a novel framework that included software architecture, smart-contract use cases, and selection criteria among blockchain networks for BCDT dApps in CI 4.0.

Copyright: © 2022 by the authors; licensee MDPI, Basel, Switzerland.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10692694
  • Published on:
    23/09/2022
  • Last updated on:
    10/11/2022
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine