0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Sliding Mode Control for Semi-Active Damping of Vibrations Using on/off Viscous Structural Nodes

Author(s): ORCID

ORCID
ORCID
ORCID
ORCID
ORCID
Medium: journal article
Language(s): English
Published in: Buildings, , n. 2, v. 13
Page(s): 348
DOI: 10.3390/buildings13020348
Abstract:

Structural vibrations have adverse effects and can lead to catastrophic failures. Among various methods for mitigation of vibrations, the semi-active control approaches have the advantage of not requiring a large external power supply. In this paper, we propose and test a sliding mode control method for the semi-active mitigation of vibrations in frame structures. The control forces are generated in a purely dissipative manner by means of on/off type actuators that take the form of controllable structural nodes. These nodes are essentially lockable hinges, modeled as viscous dampers, which are capable of the on/off control of the transmission of bending moments between the adjacent beams. The control aim is formulated in terms of the displacement of a selected degree of freedom. A numerically effective model of such a node is developed, and the proposed control method is verified in a numerical experiment of a four-story shear structure subjected to repeated random seismic excitations. In terms of the root-mean-square displacement, the control reduced the response by 48.4–78.4% on average, depending on the number and placement of the applied actuators. The peak mean amplitude at the first mode of natural vibrations was reduced by as much as 70.6–96.5%. Such efficiency levels confirm that the proposed control method can effectively mitigate vibrations in frame structures.

Copyright: © 2023 by the authors; licensee MDPI, Basel, Switzerland.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10711990
  • Published on:
    21/03/2023
  • Last updated on:
    10/05/2023
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine