0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Simulation of Pressure Head and Chlorine Decay in a Water Distribution Network: A Case Study

Author(s):
Medium: journal article
Language(s): English
Published in: The Open Civil Engineering Journal, , n. 1, v. 13
Page(s): 58-68
DOI: 10.2174/1874149501913010058
Abstract:

Background:

The main issue in the operation of water distribution systems arises from the pressure deficiency resulting from events such as loss from leaks and bursts and loss of hydraulic capacity due to deterioration of aging water pipes. Such conditions affect the hydraulic performance of the system and the quality of water.

Objective

This paper investigates the hydraulic and water quality behavior of a selected water distribution network in Makkah city using the EPANET software.

Methodology:

The system was simulated under different hydraulic conditions including a loss of hydraulic capacity with pipe age and the presence of 30% leakage in the network over varying time conditions by employing extended period simulation models.

Results and Conclusion:

The results show that increasing pipe roughness with pipe age resulted in significantly low-pressure heads at the end of the network-particularly during peak demand hours. It also resulted in an increase in the rate of chlorine decay. Leakage in the network significantly affects the pressure head, resulting in pressure deficiency at some points in the network to below the minimum requirement during regular operation. The highest leakage rate occurs at periods of low demand where the pressure head in the network is high.

Copyright: © 2019 M. O. A. Alsaydalani
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10330207
  • Published on:
    26/07/2019
  • Last updated on:
    02/06/2021
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine