Simulation of Nonstationary and Nonhomogeneous Wind Velocity Field by Using Frequency–Wavenumber Spectrum
Author(s): |
P. Hong
H. P. Hong |
---|---|
Medium: | journal article |
Language(s): | English |
Published in: | Frontiers in Built Environment, January 2021, v. 7 |
DOI: | 10.3389/fbuil.2021.636815 |
Abstract: |
The time history analysis is used to estimate the peak responses of structures subjected to stationary and nonstationary winds. The time histories of the fluctuating wind processes at multiple points can be simulated based on the spectral representation method for given target auto and cross power spectral density (PSD) functions. As the number of the processes of interest increases, the computation time for the simulation increases drastically. For the stationary homogeneous or nonhomogeneous wind fields, this problem can be overcome by using the frequency-wavenumber PSD function to simulate the stochastic propagating waves or fields. In the present study, a technique to simulate the amplitude modulated and frequency modulated nonstationary and nonhomogeneous stochastic propagating wind fields is presented. The technique relies on representing the nonstationary wind velocity by amplitude modulating a process that is time transformed from a stationary process. It is based on the established relations between the PSD functions of the nonstationary and of the stationary wind velocity. Simple to use and implement equations to carry out the simulation for one-dimensional line wind velocity field and two-dimensional nonstationary and nonhomogeneous wind velocity field are presented. The use of the developed technique and its adequacy is illustrated through numerical examples. |
Copyright: | © P. Hong, H. P. Hong |
License: | This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met. |
2.75 MB
- About this
data sheet - Reference-ID
10610631 - Published on:
08/06/2021 - Last updated on:
10/06/2021