0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Simulation of Carbon Emission Reduction in Power Construction Projects Using System Dynamics: A Chinese Empirical Study

Author(s):




Medium: journal article
Language(s): English
Published in: Buildings, , n. 12, v. 13
Page(s): 3117
DOI: 10.3390/buildings13123117
Abstract:

Power construction projects (PCPs) consume a large amount of energy and contribute significantly to carbon emissions. There is relatively little research on carbon emission reduction in PCPs, especially in predicting carbon emission reduction from a dynamic perspective. After identifying the influencing factors that promote the carbon emission reduction effect of PCPs, this study adopted a dynamic analysis method to elucidate the relationship between the variables. A quantitative carbon emission reduction system for PCPs with 51 variables was established using the system dynamics model, and the system simulation was performed using Vensim PLE software. Finally, a sensitivity analysis was conducted on four key factors: R&D investment, the prefabricated construction level, the scale of using energy-saving material, and the energy efficiency of transmission equipment. The results show that: (1) The reduction in carbon emissions from PCPs continues to increase. (2) R&D investment is the most significant factor for improving the carbon emission reduction in PCPs. (3) The value of the above four influencing factors should be increased within a reasonable range so that the four factors can work better to promote the carbon emission reduction effect of PCPs. This paper creatively proposes a dynamic prediction model for carbon emission reduction in the PCP, and the research results provide the scientific basis for government supervision and enterprise decision-making.

Copyright: © 2023 by the authors; licensee MDPI, Basel, Switzerland.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10753906
  • Published on:
    14/01/2024
  • Last updated on:
    07/02/2024
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine