0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Simulation Analysis of Supply Chain Resilience of Prefabricated Building Projects Based on System Dynamics

Author(s):

Medium: journal article
Language(s): English
Published in: Buildings, , n. 10, v. 13
Page(s): 2629
DOI: 10.3390/buildings13102629
Abstract:

In light of the intricate dynamics and uncertain risk parameters inherent in the supply chains of prefabricated building projects, bolstering the resilience of these supply chains can substantially mitigate disruption risks and facilitate superior operational outcomes for involved enterprises. This study identifies key metrics emblematic of supply chain resilience within prefabricated building projects, spanning five critical resilience dimensions: predictive prowess, absorptive potential, adaptability, inherent resilience, and growth capability. Employing the Analytic Hierarchy Process (AHP) and system dynamics (SD), we formulate a resilience simulation model specific to these supply chains. Utilizing the Nanchang Yinwang Village Comprehensive Housing Community Project as a case study, we forecast the trajectory of supply chain resilience over a five-year span and simulate the resilience variations in response to diverse variable magnitudes. Our findings reveal a consistent upward resilience trend over the five-year period. Moreover, the resilience stature of the prefabricated building project supply chain exhibits variability under distinct variable shifts. Of all the subsystems, the most reactive secondary factors encompass risk cognizance, logistics support level, collaboration intensity, supply chain reconfiguration aptitude, and managerial strategic decision-making prowess. Notably, amplifying the absorptive potential of resilience yields the most profound enhancement in overall resilience.

Copyright: © 2023 by the authors; licensee MDPI, Basel, Switzerland.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10744385
  • Published on:
    28/10/2023
  • Last updated on:
    07/02/2024
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine