0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Simplified Model of Heat Load Prediction and Its Application in Estimation of Building Envelope Thermal Performance

Author(s):



Medium: journal article
Language(s): English
Published in: Buildings, , n. 4, v. 13
Page(s): 1076
DOI: 10.3390/buildings13041076
Abstract:

This study provides a reference for estimating the building envelope thermal performance at the initial stage of design for nearly zero-energy buildings in different climate zones. A simplified model of heat load prediction, which combines the quasi-steady-state thermal balance calculation procedure in ISO 52016 and the variable-base degree-days method, was proposed. Therefore, a building energy performance evaluation tool BPT V1.0 was developed. Subsequently, the simplified model was validated through comparative analysis with the Building Energy Simulation Test (BESTEST) standard procedure. To conduct a feasibility analysis of the development tool, case studies were performed on the performance evaluation of building envelopes of residential and office buildings in different climate zones in China. Compared to the simulation results from EnergyPlus, the deviation of heat load calculated by BPT V1.0 was within 10%, which further verifies the applicability of the tool under different climatic conditions. Annual heat load under different thermal performance building envelopes was calculated through BPT V1.0. The building energy efficiency improvement rates were found to range from 30 to 60% in nearly zero-energy buildings in different climate zones in China. The study results can provide a reference for energy managers and a basis for estimating the building energy efficiency performance with different envelope thermal properties in the region.

Copyright: © 2023 by the authors; licensee MDPI, Basel, Switzerland.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10728055
  • Published on:
    30/05/2023
  • Last updated on:
    01/06/2023
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine