Shear Strength of Ultra-High-Performance Concrete Beams without Stirrups—A Review Based on a Database
Author(s): |
Yuan Huang
Gaozhan Yao |
---|---|
Medium: | journal article |
Language(s): | English |
Published in: | Buildings, 24 April 2024, n. 5, v. 14 |
Page(s): | 1212 |
DOI: | 10.3390/buildings14051212 |
Abstract: |
This paper presents a comprehensive study on ultra-high-performance concrete (UHPC) beams without stirrups, where the test data of 487 beams were collected, and an experimental database was established. Four distinct shear strength calculation models for UHPC beams were examined in the study. These models were created from national specification guides. The results indicate that while the code equation is useful for predicting UHPC beam shear capacity, it consistently underestimates actual values, with a mean experimental-to-calculated ratio above 1.5. The database was also used to study the impacts of the compressive strength of UHPC, the shear span-to-depth ratio, the fiber volume fraction, and the reinforcement ratio on the shear strength of UHPC beams. The findings showed that the shear span-to-depth ratio significantly affected the shear load-bearing capacity of UHPC beams. The increase in the compressive strength of UHPC, fiber volume fraction, and reinforcement ratio positively affected the shear strength of UHPC beams to varying degrees. Additionally, there were size effects for beams with a shear span-to-depth ratio of less than 1.5 and an effective depth of more than 300. In addition, coefficients accounting for fiber influence and the shear span-to-depth ratio were incorporated to develop an enhanced formula for UHPC beams. The empirical data from the database tests revealed that the average ratio of the beams’ experimental shear capacity to the values predicted by the modified equation is 1.3, with a standard deviation of 0.74. These results suggest that the refined equation offers improved calculation precision and broader applicability. Eventually, a summary of the issues pertaining to the shear performance of UHPC beams and the key future research directions is provided to facilitate a clearer comprehension and awareness of emerging concepts for scholars within the discipline. |
Copyright: | © 2024 by the authors; licensee MDPI, Basel, Switzerland. |
License: | This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met. |
1.54 MB
- About this
data sheet - Reference-ID
10774032 - Published on:
29/04/2024 - Last updated on:
05/06/2024