0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Shear Strength Determination in RC Beams Using ANN Trained with Tabu Search Training Algorithm

Author(s): ORCID
ORCID
ORCID
Medium: journal article
Language(s): English
Published in: Advances in Civil Engineering, , v. 2021
Page(s): 1-14
DOI: 10.1155/2021/1639214
Abstract:

The shear failure of reinforced concrete (RC) beams is a critical issue and has attracted the attention of researchers. The specific challenges of shear failure are the numerous factors affecting shear strength, the nonlinear behavior, and the nonlinear relationship between affecting parameters and the concrete properties. This study tackles this challenge by employing Artificial Neural Network (ANN) models. Since, according to No Free Lunch theorem, the performance of optimization algorithms is problem-dependent, this paper aims to assess the feasibility of modeling the shear strength of RC beams using ANNs trained with the Tabu Search Training (TST) algorithm. To this end, 248 experimental results were collected from the literature, and a feed-forward ANN model was employed to predict the shear strength. To assess its feasibility, the ANNs were also modeled using the Particle Swarm Optimization, and Imperialist Competitive Algorithms. As a traditional technique, the multiple regression model was also employed. The shear design equations of ACI-318-2019 were also investigated and compared with Tabu Search Trained ANN model. The analysis of results suggests the superiority of Tabu Search Trained ANNs in comparison to other suggested models in literature and the ACI-318-2019 design code.

Copyright: © Alireza Shahbazian et al.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10638218
  • Published on:
    30/11/2021
  • Last updated on:
    17/02/2022
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine