0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Shear Behaviour of RC Beams Strengthened by Various Ultrahigh Performance Fibre-Reinforced Concrete Systems

Author(s):

Medium: journal article
Language(s): English
Published in: Advances in Civil Engineering, , v. 2020
Page(s): 1-18
DOI: 10.1155/2020/2139054
Abstract:

This study presents a numerical investigation on the shear behaviour of shear-strengthened reinforced concrete (RC) beams by using various ultrahigh performance fibre-reinforced concrete (UHPFRC) systems. The proposed 3D finite element model (FEM) was verified by comparing its results with those of experimental studies in the literature. The validated numerical model is used to analyse the crucial parameters, which are mainly related to the design of RC beams and shear-strengthened UHPFRC layers, such as the effect of shear span-to-depth ratio on the shear behaviour of the strengthened or nonstrengthened RC beams and the effect of geometry and length of UHPFRC layers. Moreover, the effect of the UHPFRC layers’ reinforcement ratio and strengthening of one longitudinal vertical face on the mechanical performance of RC beams strengthened in shear with UHPFRC layers is investigated. Results of the analysed beams show that the shear span-to-depth ratio significantly affects the shear behaviour of not only the normal-strength RC beams but also the RC beams strengthened with UHPFRC layers. However, the effect of shear span-to-depth ratio has not been considered in existing design code equations. Consequently, this study suggests two formulas to estimate the shear strength of normal-strength RC beams and UHPFRC-strengthened RC beams considering the effect of the shear span-to-depth ratio.

Copyright: © 2020 Walid Mansour and Bassam A. Tayeh et al.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10427966
  • Published on:
    30/07/2020
  • Last updated on:
    02/06/2021
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine