0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

The Shear Behavior of Insulated Precast Concrete Sandwich Panels Reinforced with BFRP

Author(s): ORCID
ORCID


Medium: journal article
Language(s): English
Published in: Buildings, , n. 9, v. 12
Page(s): 1326
DOI: 10.3390/buildings12091326
Abstract:

Typical insulated precast concrete sandwich panel (PCSP) systems are composed of two concrete wythes separated by a layer of insulation. The structural behavior of insulated PCSP systems heavily depends on elements between two wythes known as connectors, which ensure they work as a whole. Double shear tests were carried out on 58 insulated PCSP specimens reinforced with basalt fiber-reinforced polymer (BFRP) connectors; failure modes, load displacement curves and bearing capacity of BFRP connectors were obtained. Effects of diameter, insulation thickness, installation angle, layout spacing and combined action on shear capacity were analyzed. The results show that the span ratio of the connector was suggested to be less than 15, and the angle of the connector should be set to 60° or 75° for suitable stiffness and bearing capacity with an abundant safety margin. The shear capacity decreases slightly with the increase in the connectors’ spacing while the overall impact is small. The shear force of connectors in a plane or spatial combination can be calculated according to that of one single connector. Moreover, the shear capacity model of BFRP connectors proposed in this paper provides a favorable design option for insulated PCSP systems using BFRP connectors.

Copyright: © 2022 by the authors; licensee MDPI, Basel, Switzerland.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10692792
  • Published on:
    23/09/2022
  • Last updated on:
    10/11/2022
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine