0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Shear and Bending Performances of Reinforced Concrete Beams with Different Sizes of Circular Openings

Author(s): ORCID
ORCID


ORCID
ORCID
ORCID
ORCID
ORCID
Medium: journal article
Language(s): English
Published in: Buildings, , n. 8, v. 13
Page(s): 1989
DOI: 10.3390/buildings13081989
Abstract:

The present study pertains to the effects of transverse opening diameters and shear reinforcement ratios on the shear and flexural behavior of RC beams with two web openings across different spans, i.e., a single opening in each half-span. Within the scope of the study, a total of 12 RC beams with five different opening diameter-to-beam depth ratios (0, 0.20, 0.27, 0.33, 0.40, and 0.47) and two shear reinforcement ratios were tested to failure under four-point bending. The load capacities, ductilities, rigidities and energy dissipation capacities in the elastic and plastic ranges of beam behavior were compared. Furthermore, the load capacities of the beams were compared to the existing analytical shear strength formulations in the literature. The test results indicated that whether an RC beam with openings has adequate or inadequate amounts of shear reinforcement, the frame-type shear failure becomes much more pronounced with increasing opening diameter. The reductions in the load capacity and modulus of toughness with increasing opening diameter are more considerable in the presence of inadequate amounts of shear reinforcement, while the beam ductility is less affected in shear-deficient RC beams with openings as compared to the ones with adequate shear reinforcement.

Copyright: © 2023 by the authors; licensee MDPI, Basel, Switzerland.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10737545
  • Published on:
    02/09/2023
  • Last updated on:
    14/09/2023
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine