Shaking Table Testing of a Low-Rise Reinforced Concrete Intermediate Moment Resisting Frame
Author(s): |
Sida Hussain
Hamna Shakeel Asif Ali Muhammad Rizwan Naveed Ahmad |
---|---|
Medium: | journal article |
Language(s): | English |
Published in: | Buildings, 1 December 2022, n. 12, v. 12 |
Page(s): | 2104 |
DOI: | 10.3390/buildings12122104 |
Abstract: |
Multi-level shaking table tests were performed on a 1:3 reduced scale two-story reinforced concrete (RC) intermediate moment resisting frame (IMRF) conforming to the requirements given in the ACI-318-19. The exterior joints lacked shear reinforcement to assess the viability of the ACI model recommended for determining the design shear strength of the beam–column joint panel. One of the horizontal components of the 1994 Northridge earthquake accelerogram (090 CDMG Station 24278, Source: PEER strong motion database) was input to the frame for multi-level shaking table testing. Plastic hinges developed in beams under base input motion with a maximum acceleration equal to 0.40 g. The exterior joints incurred extensive damage under base input motion with a maximum acceleration equal to 0.70 g. The frame achieved displacement ductility and overstrength factors (determined as the ratio of the maximum resistance of the frame to the design base share force) equal to 2.40 and 2.50, respectively. This gives a response modification factor equal to 6. The satisfactory performance of the frame is attributed to the high efficiency of the beam–column joint, which was confined by spandrel beams on two faces and the high strength of the concrete. The inherent minimal confinement is sufficient to ensure satisfactory seismic behavior. The analysis confirmed overstrength equal to 1.58 for joint shear strength in comparison to the design strength determined using the ACI model. The data might serve as a reference for calibrating and validating numerical modeling techniques for performance evaluation, which are crucial in the context of performance-based engineering. |
Copyright: | © 2022 by the authors; licensee MDPI, Basel, Switzerland. |
License: | This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met. |
9.1 MB
- About this
data sheet - Reference-ID
10700367 - Published on:
11/12/2022 - Last updated on:
15/02/2023