Shaking Table Test of High Pier and Small Radius Curved Bridge under Multi-point Excitation
Author(s): |
Lei Yan
Guo Li Kang An Kefeng Yue Zhi Lin |
---|---|
Medium: | journal article |
Language(s): | English |
Published in: | Advances in Civil Engineering, January 2021, v. 2021 |
Page(s): | 1-9 |
DOI: | 10.1155/2021/6640755 |
Abstract: |
The non-uniform stratum and uneven surface have the complicated seismic spatial variability. The seismic response of high pier and small radius curved bridge caused by the seismic specificity of this kind of terrain has not been systematically studied. According to the multi-point excitation theory of long-span structures and the similar theory of shaking table test in model structures, a high pier with small radius curved girder bridge was used as the research object. The shaking table test of real bridge model was carried out to study the seismic response laws of this kind of bridge under multi-point excitation. The results show that the designed seismic wave expansion device can meet the test requirements. The frequency of the model structure decreases rapidly and the damping ratio increases during the whole test process. The local terrain effect amplifies the seismic response of high pier and small radius curved bridge. The seismic response of high pier and small radius curved bridge is affected by different frequency spectrum seismic waves, and there is a big difference. Based on the above results, the impact of multi-point excitation should be considered in seismic design of high pier with small radius curved bridge. |
Copyright: | © Lei Yan et al. |
License: | This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met. |
2.31 MB
- About this
data sheet - Reference-ID
10607736 - Published on:
15/05/2021 - Last updated on:
02/06/2021