Shaking Table Model Test and Numerical Modeling for Tunnels Traversing Faultage
Author(s): |
Yang Bo
Zheng Yingren Lai Jie Liu yun Li Xiudi |
---|---|
Medium: | journal article |
Language(s): | English |
Published in: | The Open Civil Engineering Journal, March 2016, n. 1, v. 9 |
Page(s): | 789-798 |
DOI: | 10.2174/1874149501509010789 |
Abstract: |
To reveal the response and damage mechanism of a tunnel across through the fracture zone under earthquake, a shaking table model test and numerical analysis were introduced, where the scale of the numerical simulation and the model test was 1:1. The tunnel acceleration response and the crack, development process, strain response characteristics and dynamic stress distribution of lining were investigated. The results show that the tunnel lining will be subjected to large tension and compressive stress, when its tensile strength is insufficient, tension fracture would generate in the bottom of the arch or near both sides of the arch foot, so reinforced concrete lining should be adopted in order to improve its ability to bear the tensile failure; the acceleration response of lining increases with the increase of input seismic acceleration; dynamic earth pressure response is more intense on both sides of the surrounding rock. This research can serve as a reference for the seismic design of the tunnel. |
Copyright: | © 2016 Yang Bo et al. |
License: | This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met. |
2.63 MB
- About this
data sheet - Reference-ID
10175517 - Published on:
30/12/2018 - Last updated on:
02/06/2021