0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Shakedown Loading Optimization Under Constrained Residual Displacements—formulation and Solution for Circular Plates

Author(s):

Medium: journal article
Language(s): Latvian
Published in: Journal of Civil Engineering and Management, , n. 1, v. 8
Page(s): 54-67
DOI: 10.3846/13923730.2002.10531250
Abstract:

The adapted plate load optimization problem is formulated applying the non-linear mathematical programming methods. The load variation bounds satisfying the optimality criterion in concert with the strength and stiffness requirements are to be identified. The stiffness constraints are realized via residual displacements. The dual mathematical programming problems cannot be applied directly when determining actual stress and strain fields of plate: the strained state depends upon the loading history. Thus the load optimization problem at shakedown is to be stated as a couple of problems solved in parallel: the shakedown state analysis problem and the verification of residual deflections bounds. The Rozen project gradient method is applied to solve the cyclically loaded non-linear shakedown plate stress and strain evaluation and that of the load optimization problems. The mechanical interpretation of Rozen optimality criterions allows to simplify the shakedown plate optimization mathematical model and solution algorithm formulations.

Structurae cannot make the full text of this publication available at this time. The full text can be accessed through the publisher via the DOI: 10.3846/13923730.2002.10531250.
  • About this
    data sheet
  • Reference-ID
    10363583
  • Published on:
    12/08/2019
  • Last updated on:
    12/08/2019
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine