0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Semantic Segmentation of Heavy Construction Equipment Based on Point Cloud Data

Author(s): ORCID
ORCID
Medium: journal article
Language(s): English
Published in: Buildings, , n. 8, v. 14
Page(s): 2393
DOI: 10.3390/buildings14082393
Abstract:

Most of the currently developed 3D point cloud data-based object recognition algorithms have been designed for small indoor objects, posing challenges when applied to large-scale 3D point cloud data in outdoor construction sites. To address this issue, this research selected four high-performance deep learning-based semantic segmentation algorithms for large-scale 3D point cloud data: Rand-LA-Net, KPConv Rigid, KPConv Deformable, and SCF-Net. These algorithms were trained and validated using 3D digital maps of earthwork sites to build semantic segmentation models, and their performance was tested and evaluated. The results of this research represent the first application of 3D semantic segmentation algorithms to large-scale 3D digital maps of earthwork sites. It was experimentally confirmed that object recognition technology can be implemented in the construction industry using 3D digital maps composed of large-scale 3D point cloud data.

Copyright: © 2024 by the authors; licensee MDPI, Basel, Switzerland.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10795049
  • Published on:
    01/09/2024
  • Last updated on:
    01/09/2024
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine