0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Seismic Performance of Two Story Steel Building Using Shape Memory Alloys (SMAs) Bars

Author(s):

Medium: journal article
Language(s): English
Published in: Civil Engineering Journal, , n. 7, v. 5
Page(s): 1465-1476
DOI: 10.28991/cej-2019-03091345
Abstract:

Shape Memory Alloys (SMA) is type of smart materials that have ability to undergo large deformation and return back to their undeformed shape through heating (shape memory effect) or removal of load (superelastic effect). This unique ability is useful to enhance behavior of structure and seismic resistance. In this paper, superelasticity (SE) effect of NiTi alloys is used to improve the structural characteristics of steel building. The finite element analysis of steel building is done using ABAQUS v.2017. In order to compare the structural behavior of the steel building equipped with Shape Memory Alloy bars at beam-column connection, three steel building was modeled with a different combination of high strength steel bars and SMA bars. The steel building was checked for time history analysis by using Vrancea 1977 earthquake data. In order to estimate the recentring ability, residual of roof displacement and energy dissipation. The steel building equipped with SMA bars shows 82.7%, 152.72%   recovery in residual roof displacement for  steel building equipped with 50% SMA bars and 50% HS steel bars and steel building equipped with 100% SMA bars respectively, and moderate energy dissipation. In general, the frame equipped with 50% superelastic SMA bars and 50% HS steel bars provided better seismic performance.

Copyright: © 2019 Jelan Hameed, Ali Laftah Abbas
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10340715
  • Published on:
    14/08/2019
  • Last updated on:
    02/06/2021
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine