0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Seismic Performance of High-Ductile Fiber-Reinforced Concrete Short Columns

Author(s):

Medium: journal article
Language(s): English
Published in: Advances in Civil Engineering, , v. 2018
Page(s): 1-11
DOI: 10.1155/2018/3542496
Abstract:

This study mainly aims to investigate the effectiveness of high-ductile fiber-reinforced concrete (HDC) as a means to enhance the seismic performance of short columns. Six HDC short columns and one reinforced concrete (RC) short column were designed and tested under lateral cyclic loading. The influence of the material type (concrete or HDC), axial load, stirrup ratio, and shear span ratio on crack patterns, hysteresis behavior, shear strength, deformation capacity, energy dissipation, and stiffness degradation was presented and discussed, respectively. The test results show that the RC short column failed in brittle shear with poor energy dissipation, while using HDC to replace concrete can effectively improve the seismic behavior of the short columns. Compared with the RC short column, the shear strength of HDC specimens was improved by 12.6–30.2%, and the drift ratio and the energy dissipation increases were 56.9–88.5% and 237.7–336.7%, respectively, at the ultimate displacement. Additionally, the prediction model of the shear strength for RC columns based on GB50010-2010 (Chinese code) can be safely adopted to evaluate the shear strength of HDC short columns.

Copyright: © 2018 Mingke Deng et al.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10176762
  • Published on:
    30/11/2018
  • Last updated on:
    02/06/2021
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine